染料调Q红宝石激光器阈值及输出 能量与铬离子浓度的关系

赵燕曾 伍少明

(中国科学院大气物理研究所)

提要:染料调Q红宝石激光器的阈值随浓度变化的曲线上存在极小值。极小值浓度随腔损耗与宝石长度之比的增加而加大,随宝石直径的增加而减小。在相当大范围内器件的动态效率及动静比随铬离子浓度的加大而提高。

Effects of chromium ion concentration on the threshold and output energy of dye Q-switehed ruby lasers

Zhao Yanzeng Wu Shaoming

(Institute of Atmospheric Physics, Academia Sinica)

Abstract: It is shown that there is always a minimum on the threshold-concentration plot for dye Q-switched ruby lasers, which increases with the increasing ratio of cavity loss to ruby length and decreases with the increasing ruby diameter. Efficiency of the Q-switched ruby device increases with chromium concentration in a considerably wide range.

三能级结构是红宝石激光器件效率较低的根本原因,要实现粒子数反转 $N_2 - N_1 > 0$, 必须有 $N_2 > \frac{1}{2} N_0$,式中 N_0 是铬离子总数密度; N_1 、 N_2 分别为基态和亚稳态的粒子数密度。于是 N_0 愈大则需要激励到上能级的粒子数愈多。

但是,并不能由此断言铬离子浓度愈高则器件的阈值愈高。这种看法是似是而非的,至少是不全面的。我们多年来的实验表明,在一定范围内(铬含量约0.03~0.05%)器件阈值随铬离子浓度的增加而显著下降,而输出能量却随之提高。这一事实使我们考虑到,虽然 No 大时 N2 要加大,但同时宝石吸收光泵的能力也提高了,两种相反因素作

用的结果,会使阈值——铬离子浓度曲线上 出现极小值。此外,由于 R₁ 线峰值吸收截面 随浓度增加而减小,这一方面会使阈值提高, 但同时也加大了反转粒子数密度,从而增加 了输出能量。数值计算证实了上述设想,解 释了实验事实,并得到了更普遍的结果。

设 t 时刻宝石内基态和亚稳态粒子数密 度分别为 $N_1(t)$ 和 $N_2(t)$,则经过 dt 时刻后, 若忽略自发辐射及无辐射跃迁损失,应有

$$dN_2 \propto \frac{fdw'}{D^2} \tag{1}$$

式中 dw' 是投射到单位长度宝石上的光泵能量; f 是宝石所吸收的比例; D 是宝石直径。 这里假定 N₁、N₂ 及光泵能量在宝石截面内

收稿日期: 1980年6月6日。

· 28 ·

均匀分布。

作为初步近似,可以假定f正比于(1 $e^{-\sigma N_* D}$),其中 σ 是粒子从基态到 ${}^{4}F_1$ 、 ${}^{4}F_2$ 能 级的平均吸收截面。再考虑到dw'正比于单 位长度上氙灯释放的能量dw,并在一定范围 内正比于宝石直径 D,根据(1)式,得

$$dw = \frac{kDdN_2}{1 - e^{-\bar{\sigma}N_1D}} = -\frac{kDdN_1}{1 - e^{-\bar{\sigma}N_1D}}$$
(2)

式中 k 是一个比例常数, 依赖于光泵特性, 在同一器件中可视为常数。

对(2)式积分,并考虑到隐花菁染料调Q器件中动态阈值满足条件 $\Delta N_t = \gamma/2\sigma_a L$ 以及 $N_{1t} + N_{2t} \simeq N_0$,得动态阈值能量

$$W_{t} = \frac{k}{\overline{\sigma}} \varphi \left(N_{0}, \frac{\gamma}{L}, D \right),$$

$$\varphi = \ln \left[\frac{1 - e^{-\overline{\sigma}DN_{0}}}{1 - e^{-\overline{\sigma}D} \left(N_{0} - \frac{\gamma}{2\sigma_{a}L} \right)} \right]$$

$$+ \frac{\overline{\sigma}D}{2} \left(N_{0} + \frac{\gamma}{2\sigma_{a}L} \right)$$
(3)

. 29 .

式中 W_t 是单位长度上氙灯的动态阈值输入 能量; φ 是相对动态阈值能量; N_{1t} 和 N_{2t} 分 别是 N_1 和 N_2 在阈值时的数值; σ_a 是 R_1 线 峰值吸收截面; L 是宝石长度; γ 是腔损失 $= -\ln[RT^2(1-A_s)]$,其中 R 是输出端反射 率, T 是染料的弱光透过率, A_s 是腔内的其 他附加损失; σ_a 本身也是 N_0 的函数,鉴于 R_1 线的均匀加宽性质, σ_a 与线宽 $\Delta\lambda$ 成反比。 我们根据 Геворкан⁽¹⁾ 所测 $\Delta\lambda$ 随 N_0 变化的 实验结果计算了 σ_a 的变化。

(3)式右边的第一项随 N。的增大而减 小(N。很大时趋于饱和),反映了宝石吸收本 领随浓度的增加,而第二项则随浓度加大,反 映了三能级结构这一特性。

由(3)式及 φ 随 N_0 、 γ/L 和 D变化的数 值计算,可以得到以下三点推论:

1. 染料调 Q 红宝石器件的阈值随浓度 的变化存在极小值。极小值浓度随 γ/L 的增 加而加大,随直径 D 的加大而减小。

图 1(a)、(b)、(c) 绘出了 D=6 毫米、L=75 毫米的小宝石器件在不同的 T 和 R 时相 对阈值随 N_0 的变化。为了便于比较,引入 变量 φ/φ_0 ,将结果归一化。其中 φ_0 是 $N_0=$ $0.6 \times 10^{19}/ [m]$ 米³、L=75 毫米、R=0.6、T=1时的 φ 值。由这一特例可以明显地看出阈值 极小值的存在,而且极小值浓度 N_{0min} 随腔损 耗的加大而增加。我们研制的器件中 $R\simeq$ 0.2, T 在 0.5 到 0.3 之间,对应的最佳浓度理论值在 0.06~0.07% 之间,和实验值是符合的。

更普遍情况下的 Nomin 随 γ/L 和 D 的 变化见图 2。对各种直径的宝石,曲线的变 化趋势都是相同的。由图可见,腔损耗小的 静态器件可用较淡的宝石,而腔损耗大的动 态器件则宜选用浓度大的。宝石愈细,则最 佳铬含量愈高。

2. 器件的动静比与铬含量有密切关系。

图 3 绘出了不同 $N_0 = \varphi/\varphi_0$ 随 γ/L 的变化。由图可见浓度愈大则斜率愈小,这说

明浓度大时器件的动态和静态阈值相距不远,而浓度低时两者差别大。这就解释了浓度大的宝石动静比大(约1:2~1:3),浓度小的宝石则相反(常在1:10左右)的实验事实。

在一定范围内动态输出能量及动态
效率随铬离子浓度的提高而显著增加。

· 30 ·

在染料调 Q 器件中, 巨脉冲出现之前单 位长度宝石中储存的能量 $E = \frac{1}{2} \Delta N_t D^2 h v_o$ 由于 σ_o 随 N_0 而变, 所以 ΔN_t 以至 E 都是 N_0 的函数。图 4 和图 5 分别绘出了 $\frac{1}{2} \Delta N_t D^2$ 在不同参数下随 N_0 的变化。在 $N_0 < 1.5 \times$ $10^{19}/ 厘 *^3 (~ 铬含量 0.04\%) 时 <math>\frac{1}{2} \Delta N_t D^2$ 增 长很快, 而后渐趋缓慢。 $\frac{\gamma}{L}$ 愈大, 宝石直径愈 粗, E 的相对增加愈快。

根据 E 和 φ/φ_0 , 我们计算了 D=6 毫米、 L=75 毫米、T=0.4、R=0.2 时三种 $\frac{\gamma}{1}$ 下

的相对动态效率 $\eta = E\varphi_0/\varphi$,见图 6。在 $N_0 < 2.0 \times 10^{19}/ \mathbb{P} \times 3$ 时动态效率增长很快,而后 渐趋饱和。这里计算的相对动态效率的增长 率只是下限,因为没有考虑能量利用率随 ΔN 的提高。在染料调 Q 器件中,由于染料光学 漂白程度与激光功率密度的相互制约^(2,3),能 量利用率随 ΔN 的增长是很显著的。

基于以上工作,我们在尺寸为 $\phi 6-7 \times$ 80 毫米、铬含量 0.06~0.07% 的小红宝石器 件中获得了能量高达 2.7 焦耳、峰值功率 270 兆瓦的巨脉冲输出(为避免宝石破坏,通常调 到 1 焦耳左右),从而实现了气象激光雷达的 小型化^[4],使整机效率比原来的提高了四倍, 重量减少了近一个量级。

参考文献

[1] В. А. Геворкян и др.; ЖПС, 1968, 8, № 5, 742.

- [2] 赵燕曾等; 《激光》, 1979, 6, No. 12, 23.
- [3] 赵燕曾; 《激光》, 1980, 7, No. 9, 12。
- [4] 气象激光仪,《激光在气象探测中的应用》,科学出版社,1973年。